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Memory

* Definition

* Each memory is organized into memory cells — bits

* Bits are grouped into words of fixed length
+ 1,2,4,8,16,32, 64, and 128 bits
* Each word can be accessed by a binary address

* N bits (usually 32 or 64 on contemporary architectures)
* We can store 2N words in the memory

* Today, the 8-bit word is used exclusively

* Byte

This is the basis for addressing, but many architectures have
“native” support only for larger words (e.g., 32 bit)

Memory — address space

NEFR O

the address — | 1234

Typical 32-bits, or 64-bits
(also a value stored in pointers)

18.3.2024

001001011

One byte per address

Logical view
(abstraction for programmers)
4




* 2D array
* Row x column
* Select, access, deselect row
* Timing

* CAS (tCL) — Column Access Strobe
* tRCD — Row Address to Column Address Delay ’g"
* tRP — Row Precharge g ,
« RAS (tRAS) — Row Active Time & T
Column decoder
Ic | Row (14 bits) | Bank (3 bits) | Column(11 bits) | Byte in bus (3 bits) |
on— O
Data representation — integers
* Unsigned numbers * Signed numbers
* Simple binary representation of * Two’s complement
a number + Bitwise negation + 1

* One0

* Compatible with unsigned arithmetic
* Asymmetric range

. [_2N-1;2N-1_1]

* Usual sizes
* 1,2,4,8bytes

* Represented range
* [0; 2N-1]

Data representation — floats )\

* [EEE 754 floating point numbers

* Hidden bit convention
* Memory representation for single-precision, double-precision

* Use the smallest representable exponent Sign
* Hide the leading bit of significand, it is always 1 Il | | E;gsa;‘lﬁ‘grgg:::on
* Exponent (unsigned) iR e L
. _ _ Sign
* Bias (SP=127, DP=1023) I T | Double Precision
* Special values S I3 3 Floating Point

* Value
« V= (_1)signx significand X zexponent—bias

CPUs may internally use different representation

(more suitable for circuits, but more redundant)



Data representation- Endianness

32-bit integer

* How to store multi-byte numbers?
Memory 0A0BOCOD

* Big endian
* MSB first, LSB last
* PowerP(, ...

7N
©)
Btw. big endian is used in
TCP/IP protocols

* Little endian

* |LSB ﬁrSt, MSB last 32-bit integer
* Intel (x86) 0A0BOCOD
* Example 1=
> atl:
* Store 32-bit number 0OXxOAOBOCOD - at:

Little-endian

18.3.2024

Data alignment — inner padding O

* Modern CPUs require data in memory aligned to their size
* E.g., integer (4B) must have address aligned to 4
* Structure is aligned to largest data type available on CPU (e.g., 16B)

struct dem ({ A : / A c |1B
char c; A+l 7B

d 8B
double d; A+8

. . d 8B
int i; A+9 /i \ 48

bi % \ Sl I T P

A+20
18.3.2024 10

ata alighnment — outer padding O)\

dem arr[2]; A ¢ |1B A c 1B )
7B 7B
+8 arr[0] A+8 arr[0]
d 8 d 8B
A+1 \ i /4B A+16 i 4B
A+20[ NcZ | 1B 7 4B |
7B A+24 © 1B
%82 A+28)f 4 Ngg [ 2550 8
A+32 — arr[1]
6 i E\ S °°
A+40 A+40 i 4B
4B ]
A+48



Instruction @

* Simple command to the CPU
* Binary encoding (CPU), assembler (programmers)

MIPS32 Add Immediate Instruction

-00001 00010: 0000000101011110
{OP Code: Addr 1 Addr 2 Immediate value

Equivalent mnemonic: addi $rl, $r2, 250

* Operands
* Depending on ISA—max 1, 2, or 3 (some may be implicit)
* Register, immediate value

Instruction cycle

* Sub-steps performed in every instruction

* Load an instruction from the address stored in IP register
* Decode the instruction
* Load operands

* Execute the operation
* Store the result

¢ Increment IP

Some steps may be skipped

for some instructions

Instruction classes (@

* Load instructions
* Memory -> register
* Take a long time to execute, important to detect soon (fetch data ahead)

 Store instructions
* Register/immediate -> memory
* Move instruction

* Between registers

* x86-64 also between registers and memory
* Difficult to implement efficiently in HW

Instruction classes

* Arithmetic and logic instructions
ct+, -, LKL, >>, &, |, "~ ~
¢ *I /I %

e Jumps
* Unconditional x conditional
* Direct x indirect x relative

* Call, return




~ Higher-level code structures

if (a < 3) b =4; else c¢c = a << 2;

jge [al, 3

store [b], 4

. This is just a symbolic abstract assembler
Jup (not an actual one)

load rl, [a]

add r2, r2, rl
store [r2], rl
add rl, rl1, 1

Jjmp

Actually, the offset needs to be multiplied by
sizeof (a[0]), but you got the point...




MIPS — instructions @

. . .
Arithmetic These are only symbolic placeholders, real example could look like
* add $rd,$rs,$rt add $r2,$r4,$r5
¢ R[rd] = R[rs] + R[rt]
¢ addl $rd ’ Srs ,imml16 Immediate value, 16 bit number encoded directly
* R[rd] = R[rs] + signext(imm16) in the instruction itself

* sub $rd,$rs,S$rt

Signed extension to 32bits
(to match size of the registers)

* subi $rd,S$rs,immlé

ISA comparison @

MIPS Xx86
add $tl1,$tl1l,$t0 add eax,ebx
addi $t1,8t1,1 add eax,1

or inc eax

add $t2,$t0,8t1 mov eax,ebx

MIPS — instructions @

* Logic operations

*and $rd,$rs,Srt andi $rd,$rs,immlé
* or $rd,Srs,S$rt ori $rd,$rs,immlé
* xor $rd,$rs,Srt xori $rd,S$rs,immlé
*nor $rd,$rs,S$rt e R[rd] = R[rs] and/or/xor zeroext(imm16)
* No not instruction, use nor $rd, $rs,$rs
* Shifts

*sll/slr $rd,S$rs,shamt
* R[rd] = R[rs] <</ >>shamt

* sra $rd,S$rs,shamt
Arithmetic shift (keeps the sign)

ISA comparison @

MIPS X86
nor $tl1,$t2,$t2 mov eax,ebx
not eax

sll $t1,8t1,3 shl eax,3



MIPS — instructions @

* Memory access * Moves
*lw $rd,immlé6 (Srs) *1li $rd,imm32
e R[rd] = M[R[rs] + signext32(imm16)] ¢ R[rd] =imm32
* sw Srt,immlé6 ($rs) * Pseudo-instruction,

* M[R[rs] + signext32(imm16)] = R[rt] translates to 1ui and ori

1b $rd, i 16 ($rs) Load upper immediate
""" _ _ . * move $rd,Srs
* R[rd] = signext32(M[R[rs] + signext32(imm16)])
* R[rd] = R[rs]

lbu $rd,immlé6 ($rs)

.
0
o
v
H
‘+
E.
[
(&)
«
3]
0

e MIR[rs] + signext32(imm16)] = R[rt]

ISA comparison @

MIPS x86

1w $t1,1234($t0) mov eax, [ebx+1234]

sSW $t1,1234($t0) mov [ebx+1234] ,eax

1b $t1,1234($t0) mov al, [ebx+1234]

1i $t1,5678 mov eax, 5678

move $tl1,$t0 mov eax,ebx

. X 7N
MIPS — instructions @
* Jumps
°* j addr Slightly different instruction format —

e PC=addr the address is a 26bit immediate value
* jr Srs
e PC=R[rs]
* Jjal addr
e “Jump and link”
* R[31]=PC+4
* PC=addr

jal instruction (like all other instructions) takes 4 bytes in memory

ISA comparison @

MIPS Xx86
Jj label jmp label
jr $ra jmp [ebx]
label: label: This is double indirection!!!

Register ebx holds address
call fnc where is the pointer that is
loaded and used as target

address for the jump!

Return address

Placeholder that marks a place in the code, the

actual address is computed by a compiler stored to stack!




MIPS — instructions

* Conditional jumps
* beq $rs,$rt,addr

e If R[rs] == R[rt] then PC = addr else PC = PC+4
* bne $rs,$rt,addr

* Analogical (not equal)

* Testing

. slt / sltu $rd , $rs , Srt sltuis unsigned version of s1t
Only lesser-than test, greater-than
ICCR[GENVl  is created by swapping operands

* If R[rs]<R[rt] then R[rd] = 1 else R[rd] =0
* slti/sltiu $rd,$rs,immlé
* If R[rs] < signext/zeroext(imm16) then R[rd] =

ISA comparison

MIPS
beq $t0,$tl,label

X86

slt $t2,5t1,5t0
bne $t2,$zero,label

slti $t2,6t1,5

cmp eax,ebx
label

©

©®

Universal compare
(result stored in flags)

Jump decision based on flags

cmp eax,ebx
j1l label

cmp eax,5

bne $t2,$zero,label jl label

Code examples

* Simple for-loop addi  $t0, sgp, 28 #
1w $tl, 4($gp) #
move §$t2, $zero #

for (int 1 = 0; i < N; i++) ori $t3, $zero, 42 #

¢ J cond #
A[i] = 42; body :

} s11  $t4, $t2, 2 #
add  $t4, $t4, $tO #
sw $t3, 0($t4) #
addi $t2, $t2, 1 #

cond:
slt  $t4, $t2, $t1 #
bne $t4, $zero, body #

O

$t0 <- address of A
fetch N

i=0o0

$t3 = 42

go to condition

i*4 -> offset

A+i*4

A[i] = 42

i= i+l

are we there yet?

no, we're NOT done



Code examples ©

i = N*5+3;

1w $t0, 4(5gp) 4 fetch N 1w $t0, 4($gp) # fetch N

ori $tl, $zero, 5 # 5 aii sti, to, 2 #onea

mult $t0, $t0, $t1 # N*5 (fake) add $t1, $t1i, to # N*4+N

addi $t0, $t0, 3  # N*5 + 3 addi  $t1, $ti, 3 ¥ N+3
$t1, 0($gp) # 1=

sSW $t0, 0($gp)

Multiplication is more complex as the

result needs to be stored in 2 registers Code can be optimized...

(but we have simplified it here)

* Abstract machine

* Presented by kernel API

e * System calls
Application
pplicatio » Wrapped in C libraries

Shared
‘ _ T * Hide HW complexity/diversity
z ‘ * Resource manager
* All HW managed by OS
* Sharing HW among applications
* Allocation (memory)
* Time-sharing (CPU)
* Abstraction (disk, network)

CPU modes @

* User mode
* Available to all application
* Limited (e.g., read-only) or no access to some resources
* The system registers, instructions
* Kernel (system) mode
* More privileged (all registers and instructions are available)
* Used by OS or by only part of OS
* Full access to all resources

* The transition between the modes (especially user -> kernel)
* Syscall (user instruction), jumps to the explicit kernel entry point



N e e En
Kernel mode example @

~* Print string to std. output movqg rdx, @len
- * Note that requires kernel call movqg rcx, Q@msg

movqg rbx, 1

int main() { movg rax, 4

Jumps to address stored in

IA32_LSTAR register whilst

| } switching to ring 0 (kernel mode)

L sysret
I sysret Return and switch to ring 3

Architecture — layered @

¢ Evolution of monolithic system
¢ Organized into hierarchy of layers

* Layer n+1 uses exclusively services supported by layer n
* Easier to extend and evolve

Devices @

* Terminology

* Device - “a thing made for a particular purpose”

¢ Device controller

* Handles connected devices electrically (signals “on wires”, A/D converters)

* Devices connected in a topology

¢ Device driver

* SW component (piece of code), part of OS (module, dynamically loaded)

¢ Abstract interface to the upper layer in OS

* Specific for a controller or a class/group of controllers

* BIOS/UEFI

¢ Basic HW interfaces that allow to enumerate and initialize devices on boot




Device communication

* How CPU performs 1/O operations

W e NGO A WNR

[N
o

* Specialized instructions
* in al, dx
* out al, dx

* Memory-mapped devices

Old x86 input-output instructions
(dx holds the 10 port number associated with the device)

* Device operating structures are mapped at fixed addresses (at boot)
* Basic memory operations are translated by HW into I/O operations

* Reads and writes may trigger some device functions

* E.g., writing at a specific offset may in fact send a command to the device

Device handling

Application issues an |/O request

Language library makes a system call

The kernel decides, which device is involved

The kernel starts an 1/O operation using a device driver

The device driver initiates an 1/0 operation on a device controller
Device does something

The device driver checks for the status of the device controller
When data are ready, transfer data from the device to the memory

Return to any kernel layer and make other I/O operations fulfilling
the user request

Return to the application

Example — P10 disk handling

Portofser [ Funcion

N o L AW N B O

User I/O libraries

User

Device independent
[+1+ VO

I _
Device Device
driver driver

Kernel

'. .
Device Device
controller | | controller

HW

O

* Reading sectors (simplified)

Data register 1. Check status/error

Error register
Sector count register

Sector number register

ik whN

Cylinder low register
Cylinder high register

Drive/head register

o

Status/Command register

Ports relative to the device base address
operated by in/out instructions

Set count register
Set address (sector and cylinder)
Send reading command 0x20

Read the status register until the
operation completes (or fails)

Read the data register 256 times
(based on the size of the data)

7. Possibly repeat steps 5 & 6



S
Device intercommunication (@\

* Polling

* CPU actively checks device status change (like in previous example)

* Interrupt
* The device notifies the CPU that it needs attention
* CPU interrupts the current execution flow
* IRQ (interrupt request) handling
* CPU has at least one pin for requesting an interrupt

* DMA (Direct Memory Access)
* Transfer data to/from a device without CPU attention
* DMA controller
* Scatter/gather

Interrupt request handling (@\

* What happens, when an interrupt occurs? Hulu
* CPU decides the source of the interrupt
* Predefined or IRQ controller IRQ
 CPU gets the address of the interrupt handler controller

- Fixed (defined by ISA) #mﬂw
* Interrupt table (array of pointers of handlers for individual interrupts)

* The current stream of instructions is interrupted,
CPU begins execution of interrupt handler’s instructions

* Usually between instructions (current instruction must be complete or rollback)
* A privilege switch usually happens, the interrupt handler is part of a kernel
* An essential part of the CPU state (at least IP) must be saved (e.g., to a special register)

* The interrupt handler saves the (rest of the) CPU state

* The Interrupt handler does something useful (its job)

* The interrupt handler restores the CPU state

* CPU continues with the original instruction stream

CPU




Processing G\

* Program * Thread Code
* A passive set of instruction * One activity in a process T1
and data * Stream of instructions T2
* Created by a compiler/ executed by CPU
linker * Unit of kernel scheduling
* Process * l.e., Holds CPU context
* An instance of a program * Fiber Static data
created by OS * Lighter unit of scheduling
* Program code and data « Cooperative scheduling Stack for thread 1
* Process address space * Running fiber explicitly ¢
* The program is “enlivened” yields
by an activity Stack for thread 2
* Instructions are executed
by CPU
* Owns other resources Heap
(&)
O,
Process vs. Thread O\
* Process * Thread
* Code (loaded in memory) * Position in code (program counter)
* Memory space * Own stack (rest is shared)
* Other system resources * Access to some system resources
* File handles may require synchronization
* Network sockets * CPU state
* Synchronization primitives * Must be saved when thread is
L removed from CPU core and

reloaded when the thread resumes
. 7N
Processing O\

e Scheduler
¢ Part of OS

* Uses scheduling algorithms to assign computing resources to scheduling units
(CPU cores)

* Multitasking
* Concurrent executions of multiple processes

* Multiprocessing
* Multiple CPUs (cores) in one system

* More challenging for the scheduler
* Affinity

The main distinction between a thread switch and a process switch is that during a thread switch,
the virtual memory space remains the same, while it does not during a process switch. Both types
involve handing control over to the operating system kernel to perform the context switch. The
process of switching in and out of the OS kernel along with the cost of switching out the registers is
the largest fixed cost of performing a context switch.

A more fuzzy cost is that a context switch messes with the processors cacheing mechanisms.
Basically, when you context switch, all of the memory addresses that the processor "remembers” in
its cache effectively become useless. The one big distinction here is that when you change virtual
memory spaces, the processor's Translation Lookaside Buffer (TLB) or equivalent gets flushed
making memory accesses much more expensive for a while. This does not happen during a thread
switch.



Processing

* Context

O\

* CPU (and possibly other) state of a scheduling unit
* Registers (including PC, specialized vector registers)

¢ Additional units (x87 coprocessor)

* Virtual memory and address-space-related context

* Page tables, TLB (will be covered later)

* Memory caches are transparent (not part of the context, but may affect performance)

* Context switch

* Process of storing the context of a scheduling unit (when suspended)
and restoring the context of another scheduling unit (when resumed)

* Quite costly (hundreds-thousands of instructions)

AN
Uﬂﬁ@f—sehedﬂ-l-iﬁg—gt—a%er State of scheduling unit (@‘\

* Created
* Awaits admission

* Terminated

* Until the parent process reads the result

* Ready
* Wait for scheduling

* Running
* CPU assigned

* Blocked
» Wait for resources

Multitasking

* Cooperative
* Unit of scheduling must explicitly
and voluntarily yield control
* All processes must cooperate
* Special systems

* Scheduling in OS reduced on
starting the process and making
context switch after the yield

* OS does not initiate a context switch

Sioaie Termina!ted
(zombie)
Blocked

O\

* Preemptive

* Each running unit of scheduling
has an assigned time slice

* OS needs some external source of
interrupt (HW timer)

* If the unit of scheduling blocks or
is terminated before the time slice
ends, nothing of interest happens

* If the unit of scheduling consumes
the whole time slice

¢ interrupted by the external source
* changed to READY state
* OS will make a context switch



Scheduling ©\

* Objectives
* Maximize/optimize CPU utilization (based on the workload)
* Fair allocation of CPU
* Maximize throughput
* Number of processes that complete their execution per time unit
* Minimize turnaround time
* The amount of time taken by a process to finish
* Minimize waiting time
* Time a process waits in the READY state

* Minimize response time
¢ Time to respond in interactive applications

Scheduling — priority O\

* Priority
* A number expressing the importance of the process

* Unit of scheduling with greater priority should be scheduled before (or more
often than) unit of scheduling with lower priority

* The priority of the process is the sum of a static priority and dynamic priority
* Static priority
* Assigned at the start of the process
* Users’ hierarchy or importance
* Dynamic priority
* Adding fairness to the scheduling
* Once in a time, the dynamic priority is increased for all READY units of scheduling

* The dynamic priority is initialized to 0 and is reset to 0 after the unit of scheduling is
scheduled for execution

Scheduling algorithms — non-preemptive ©)\

* First Come, First Serve (FCFS)
* Single FIFO queue
* A process enters the queue on the tail, the head process is running on the CPU
 Afterward, there is removed from the queue
* Shortest Job First
* Maximizes throughput
* Expected job execution time must be known in advance

* Longest Job First



Scheduling algorithms — preemptive

* Round Robin
* Like FCFS (but preemptive)
* Single queue

B

* Each unit of scheduling has an assigned time slice
* If the unit of scheduling consumes the whole time slice or is blocked, it will be

assigned to the tail of the queue

Scheduling algorithms- preemptive

* Completely fair scheduler (CFS)

* Implemented in Linux kernel
* Currently the default scheduler
* SUs are stored in a red-black tree

* Indexed by their total execution time
(called virtual runtime)

* One tree per CPU core
* Maximum execution time
* Atime slice calculated for each unit

* Total waiting time divided by the
current number of processes

* The longer it waits, the greater

©\

* Scheduling algorithm

* The leftmost node in the RB tree is
selected (lowest virtual runtime)

* |f the process completes its execution, it
is removed from the schedule

* |If the process reaches its maximum
execution time or is somehow stopped or
interrupted, it is reinserted into the tree
with a new time key

* Actual time spent on the CPU is added to
the virtual runtime

* Virtual runtime decays over time



Virtual memory O\

* Basic concepts

* All memory accesses from instructions work with a virtual address
* Virtual address space
* Even instruction fetch

* Operating memory provides physical memory
* Physical address space
* Always 1-dimensional
* The memory controller uses physical addresses

* Translation mechanism
* Implemented in HW (MMU embedded in CPU)
* Translates a virtual address to a physical address
* The translation (mapping) may not exist -> exception (fault)
* Two basic mechanisms — segmentation, paging

Virtual memory (@\

* Why?
* More address space

* VAS can be larger than PAS (an illusion of having large memory)
¢ Today, IA-32 can have larger PAS than VAS

» Add secondary storage as a memory backup/swap

* This is no longer the primary reason today
* Security

* Process address space separation

» “Separation” of logical segments in a process address space (read-only, executable, ...)
* Specialized (advanced) operations

* Memory-mapped I/0 (e.g., memory-mapped file)

* Controlled memory sharing

Segmentation (f')\

* Concepts

* Virtual (process) address space divided into logical segments
* Segments are numbered
* may have different sizes

* Virtual address has two parts
* [segment number; segment offset]
» Offsets 0-based for each segment

* Segment table (translation data structure)
* In memory, for each process
 Stores base physical address, length, and attributes for each segment

* Indexed by the segment number
» Segment fault (if translation or validation of access fails)



Segmentation

* Schema

Code

Constants offs

Heap

Initialized static data

Constants

offs

Uninitialized static data

Stack for thread BPA

Stack for thread

.

len

Code

: 4
I Heap

Seg table

Paging

* Concepts
* VAS divided into equal parts
* Page, 2" size
* PAS divided into equal parts
* Frame, equal size with page (i.e., one page fits exactly one frame)
* VA 1-dimensional

* Page table (translation data structure)
* In memory, for each process

This is very important!

* Indexed by a page number
* Each entry contains a frame number and attributes (P)
* Page fault

Paging

* Concepts
0
E Physical address
: Virtual address P-1 n-l 0
| N1 n-l1 0 — f
e
I
1
Mg

0
1

| offs | @S



IR O O A
~ Page table — 1-level d@i

| VAS pages Page table PAS frames
| 0

1

2
[ | |
— 14 456 :

|

I 123 17
[ I
I 1111 NA &age fault k !
| 3333 222
| oNng NN
— 1142024 69

- Page table — 2-leve ©

Virtual address

B 31 21 11 0
| PT index 1 PT index 2 -
i 0 P 10 p12
- —

4k 4k

1024 entries 1024 entries




Example/Exercise ©®

* Having the following code * Questions
executed on |A-32 * How many (data) pages are read?
* 32bit addresses * What is the minimal amount of
« 2-level paging, 4 KiB pages page faults (optimistic scenario)
» sizeof (int) == 4 * What is the maximal amount of
page faults (pessimistic scenario)
const int* data = .. * How many distinct pages may
long long sum = 0; cause a page fault in the worst
case?

for (int i = 0; i < 2000; ++i) {
* What if we copy the data?

sum += data[i]; * What about the code?

The data block is 4 * 2000 = 8000B long, i.e., it can span 2 or 3 (4KiB) pages depending on the actual address of data pointer.

Optimistic and pessimistic scenarios are trick questions. The answers are 0 and infinity.

The block spans over 3 pages (worst case), so it is covered by two 2nd level page tables (worst case) and the first level is always in the memory (i.e., 5 distinct faults in total).

If we copy the data, the number will double (we need to count source and destination pages, unless there are some assumptions about from where to where the data are being copied).

The code may also cause some page faults. This will definitely be at least a few instructions, but clearly the loop does not require more than 4 KiB of code (it is simple enough), so it can span 2 pages at the worst + 2 (2nd level) page
tables = 4 additional page faults.

Paging — address translation (@\

* Steps for address translation * Go through the page table
* Take the page number from VA * Divide page number into multiple PT
indices

and keep offset (separately)
* Check TLB for mapping

* Index 1%t level PT

* If there is no mapping for 2" level

* If exists, retrieve the frame number, PT, raise page fault exception
otherwise continue  Retrieve PA for 2" |evel PT and
* Go through the page table continue
» Update A(ccessed) and D(irty) bits * Go thro”gh_a” levels ‘_’f P_TS
in page table/TLB " el raise page ult exception
* Assemble PA by concatenating the « If all PT levels are mapped, retrieve
retrieved frame number and the frame number

original offset from VA | f [oie] © Save retrieved mapping to TLB




File (@\

* File
* Data organization unit
* Collection of related information
* Abstract stream of data (bytes)
* Kernel does not understand file formats
* Typically stored on secondary storage, but there are other possibilities
* File identification
* System uses numeric identifiers
* File name and path —a named reference to the file identifier in organized tree structure
* So that humans can find the files
* Some parts of the file name may have special meaning (leading dot, extension)

©

File operations

* Std. libin C * POSIX

#include <stdio.h> #include <unistd.h>

FILE *fp = fopen("file.txt", "r"); int fd = open("file.txt", O_RDONLY) ;
if ('fp) { /* error */ } if (fd == -1) { /* exror */ }

fseek (fp, 42, SEEK_SET); lseek (fd, 42, SEEK_SET);

fgets(buf, 16, fp):; read(fd, buf, 16);

fclose (fp) ; close(£d) ;

File operations O\

* Additional operations
P . It is no coincidence that stdin,
* Create, truncate, delete, flush, change attributes S s By

. F|Ie ha ndle descriptors have handles 0, 1, and 2.

* Process-specific sequentially assigned, kernel holds translation table

* Buffering
* To increase performance, multiple levels (system, language runtime)
* Sequential vs random access

* Alternatives
* Memory mapping (will become more clear after memory management)
* Async file I/O



Race condition

* Race condition

* Multiple threads accessing
(updating) the same data in
shared memory space

* Cache coherency helps a little, but
does not actually solve anything

* Load-store architecture makes it
more pronounced

* The result of a computation
depends on the sequence or
timing of units of scheduling

Race condition

* Shared variable
List 1lst;

* Thread 1
lst.PushFront (a) ;

* Thread 2
lst.PushFront(B) ;

Critical section

* Problem definition

class List {
private:

Node *root;

public:
void PushFront (Node *n) {

n->next = root;
root = n;
}
};
Ist X —Y
A
Ist X —Y
B
B
Ist XY
A
B
Ist X —Y
A

©\

©®

¢ Concurrent access to a shared resource can lead to the race condition or even

to an undefined behavior
* Solution

* Parts of the program, where the shared resource is accessed, need to be
protected to avoid concurrent access

* Critical section
* Protected section of the program

* Mutual exclusion

* A critical section can be executed simultaneously by at most one unit of

scheduling



Synchronization

* Process synchronization

©®

* Multiple units of scheduling do some form of a handshake at a certain point
to make an agreement to a certain sequence of action

* Data synchronization

» Keeping multiple copies of data in coherence with each other

* Maintain data integrity

* Usually implemented by process synchronization

* Problems with synchronization
¢ Deadlock, starvation, overhead...

Synchronization primitives

* Synchronization primitives
* Implement process
synchronization (in OS)
* Active

* Instructions are executed during
waiting for an access

* Busy waiting (testing a condition in a
loop)

* Hardware support

e Atomic instructions

* Test-and-set (TSL),
compare-and-swap (CAS)

* Instruction semantics:

bool cas(T* var, T old, T newVal)

{

. Passive/blocking if (*var !'= old) return false;

* The unit of scheduling is blocked
until access is allowed

*var = newVal;
return true;

This is realized as one instruction!

©)

Synchronization primitives

* Spin-lock

* Busy waiting using TSL/CAS

* Short latency, right for short waiting times
* Semaphore

* Protected counter and a queue of waiting for US
* Atomic operations UP and DOWN

void down() { void up() {

if (counter > 0) --counter; if (counter == 0 && 'queue.empty()) {
else { US = queue.popany() ;

queue .push (myUS) ; US.unblock() ;

myUS.block () ; }

} else ++counter;

} }



Synchronization primitives )

* Mutex

* Implements mutual exclusion (semaphore with counter = 1)
* Atomic operations LOCK and UNLOCK (corresponding to UP and DOWN)

* Barrier
* Multiple units of scheduling meet at the same time on the same barrier

* Specific programming language constructs
* Monitor
* Methods in an object executed with mutual exclusion
* Possibility to wait on a certain condition
 Java/CH#

« Keyword synchronized/lock Creates a critical section



