
Parallel programming
and synchronization

NSWI170 Computer Systems

Jakub Yaghob, Martin Kruliš

Parallel and concurrent computing

• Parallel computing
• Calculations or executions of processes are carried out simultaneously
• Bit-level, instruction-level, data, and task parallelism
• Parallelism without concurrency – bit-level parallelism
• The problem is broken into several similar subtasks, results combined

• Concurrent computing
• Multiple computations (processes) are executed simultaneously
• Concurrent without parallelism – multitasking on a single CPU
• Processes do not work on related tasks

• Forces
• One (shared) address space
• Threads
• Multiprocessing
• Scheduling

20.5.2024 2

Race condition

• Race condition
• Multiple threads accessing

(updating) the same data in
shared memory space
• Cache coherency helps a little, but

does not actually solve anything

• Load-store architecture makes it
more pronounced

• The result of a computation
depends on the sequence or
timing of units of scheduling

class List {

 private:

 Node *root;

 public:

 void PushFront(Node *n) {

 n->next = root;

 root = n;

 }

};

20.5.2024 3

Race condition

• Shared variable

List lst;

• Thread 1

lst.PushFront(A);

• Thread 2

lst.PushFront(B);

20.5.2024 4

lst X Y

lst X Y

B

A

lst X Y

A

B

lst X Y

A

B

Critical section

• Problem definition
• Concurrent access to a shared resource can lead to the race condition or even

to an undefined behavior

• Solution
• Parts of the program, where the shared resource is accessed, need to be

protected to avoid concurrent access

• Critical section
• Protected section of the program

• Mutual exclusion
• A critical section can be executed simultaneously by at most one unit of

scheduling

20.5.2024 5

Synchronization

• Process synchronization
• Multiple units of scheduling do some form of a handshake at a certain point

to make an agreement to a certain sequence of action

• Data synchronization
• Keeping multiple copies of data in coherence with each other

• Maintain data integrity

• Usually implemented by process synchronization

• Problems with synchronization
• Deadlock, starvation, overhead…

20.5.2024 6

Synchronization primitives

• Synchronization primitives
• Implement process

synchronization (in OS)

• Active
• Instructions are executed during

waiting for an access
• Busy waiting (testing a condition in

a loop)

• Passive/blocking
• The unit of scheduling is blocked

until access is allowed

• Hardware support
• Atomic instructions

• Test-and-set (TSL),
compare-and-swap (CAS)

• Instruction semantics:

bool cas(T* var, T old, T newVal)

{

 if (*var != old) return false;

 *var = newVal;

 return true;

}

20.5.2024 7

This is realized as one instruction!

Synchronization primitives

• Spin-lock
• Busy waiting using TSL/CAS
• Short latency, right for short waiting times

• Semaphore
• Protected counter and a queue of waiting for US
• Atomic operations UP and DOWN

20.5.2024 8

void down() {

 if (counter > 0) --counter;

 else {

 queue.push(myUS);

 myUS.block();

 }

}

void up() {

 if (counter == 0 && !queue.empty()) {

 US = queue.popany();

 US.unblock();

 }

 else ++counter;

}

Synchronization primitives

• Mutex
• Implements mutual exclusion (semaphore with counter = 1)
• Atomic operations LOCK and UNLOCK (corresponding to UP and DOWN)

• Barrier
• Multiple units of scheduling meet at the same time on the same barrier

• Specific programming language constructs
• Monitor

• Methods in an object executed with mutual exclusion
• Possibility to wait on a certain condition

• Java/C#
• Keyword synchronized/lock

20.5.2024 9

Creates a critical section

Deadlock

20.5.2024 10

Deadlock

• Deadlock
• A state of a group of units of scheduling and resources, where every member of the

group waits for an action, which can be performed by other member in the group

• Necessary conditions for deadlock (Coffman)
• Mutual exclusion

• At least one resource in exclusive mode

• Hold and wait
• US holding a resource requests for another one

• No preemption
• Resources cannot be reclaimed without harm

• Circular wait
• There is a circle in a deadlock modelling graph

T1

T2

R1 R2

20.5.2024 11

Deadlock – example

Shared mutexes

Mutex m1, m2;

Thread 1

m1.lock();

m2.lock();

m2.unlock();

m1.unlock();

Thread 2

m2.lock();

m1.lock();

m1.unlock();

m2.unlock();

20.5.2024 12

Classic synchronization problems

• Classic synchronization problems
• Set of well-known synchronization problems

• Demonstrate a problem using an allegory

• Avoid deadlock, starvation, and other problems

• Bounded-buffer (producer-consumer)

• Dining philosophers

• Readers and writers

• Sleeping barber

20.5.2024 13

Producer-consumer

• Problem
• Producer produces a product and he places it to the warehouse with a limited

capacity. If the warehouse is full, producer will stop production of products.

• Consumer takes a product from the warehouse. If there is no item available,
consumer will wait for an item.

• If the warehouse is empty and producer produces the first product and there
is a waiting consumer, producer will wake up consumer

• If the warehouse is full and consumer takes the first product and there is
stopped producer, consumer will wake up producer

20.5.2024 14

Dining philosophers

• Problem
• N philosophers sitting around a circular table

• Each philosopher has a plate of Chinese food in front of him

• There is one chopstick between each dish, two chopsticks are needed to eat

• The life of a philosopher consists of thinking and eating

20.5.2024 15

P4

P2

P1

P5

P3

Readers and writers

• Problem
• Common data structure

• Readers are able only to read data

• Writers change data or a data structure

• Many readers may read simultaneously

• Only one writer can change the data at a time

• A reader must wait if there is a working writer

• A writer must wait if there are working readers

• RW Lock
• More difficult to make it fair/efficient

20.5.2024 16

Sleeping barber

• Problem
• Barbershop with one barber, one barber chair, and N

waiting chairs

• When there is no customer, the barber goes to sleep in
the barber chair

• Barber must be woken when a customer comes in

• When the barber is cutting hair, new incoming
customers are waiting in chairs or leaving the shop, if
there is no empty chair

20.5.2024 17

Discussion

20.5.2024 18

	Default Section
	Slide 1: Parallel programming and synchronization
	Slide 2: Parallel and concurrent computing
	Slide 3: Race condition
	Slide 4: Race condition
	Slide 5: Critical section
	Slide 6: Synchronization
	Slide 7: Synchronization primitives
	Slide 8: Synchronization primitives
	Slide 9: Synchronization primitives
	Slide 10: Deadlock
	Slide 11: Deadlock
	Slide 12: Deadlock – example
	Slide 13: Classic synchronization problems
	Slide 14: Producer-consumer
	Slide 15: Dining philosophers
	Slide 16: Readers and writers
	Slide 17: Sleeping barber
	Slide 18: Discussion

