Parallel programming
and synchronization

NSWI170 Computer Systems

Jakub Yaghob, Martin Krulis



Parallel and concurrent computing

* Parallel computing
 Calculations or executions of processes are carried out simultaneously
 Bit-level, instruction-level, data, and task parallelism
 Parallelism without concurrency — bit-level parallelism
* The problem is broken into several similar subtasks, results combined

* Concurrent computing
* Multiple computations (processes) are executed simultaneously
e Concurrent without parallelism — multitasking on a single CPU
* Processes do not work on related tasks

* Forces
* One (shared) address space
* Threads
* Multiprocessing
e Scheduling



Race condition

 Race condition

* Multiple threads accessing
(updating) the same data in
shared memory space

* Cache coherency helps a little, but
does not actually solve anything

* Load-store architecture makes it
more pronounced
* The result of a computation
depends on the sequence or
timing of units of scheduling

class List {
private:

Node *root;

public:
void PushFront (Node *n) {
n->next = root;

root = n;



Race condition

 Shared variable
List 1lst;

e Thread 1

lst.PushFront (a) ;

e Thread 2

lst.PushFront (B) ;

20.5.2024

|st

|st

|st

i

Ist




Critical section (@2

* Problem definition
 Concurrent access to a shared resource can lead to the race condition or even

to an undefined behavior
* Solution
e Parts of the program, where the shared resource is accessed, need to be
protected to avoid concurrent access
* Critical section
* Protected section of the program

e Mutual exclusion

* A critical section can be executed simultaneously by at most one unit of
scheduling



Synchronization (@/L

* Process synchronization
* Multiple units of scheduling do some form of a handshake at a certain point
to make an agreement to a certain sequence of action
e Data synchronization
* Keeping multiple copies of data in coherence with each other
* Maintain data integrity
* Usually implemented by process synchronization

* Problems with synchronization
e Deadlock, starvation, overhead...



Synchronization primitives (@g

e Synchronization primitives

* Implement process
synchronization (in OS)

e Active

* Instructions are executed during
waiting for an access
e Busy waiting (testing a condition in
a loop)

* Passive/blocking

* The unit of scheduling is blocked
until access is allowed

* Hardware support

 Atomic instructions

e Test-and-set (TSL),
compare-and-swap (CAS)

* |nstruction semantics:

bool cas(T* var, T old, T newVal)

{
if (*var !'= old) return false;
*var = newVal;
return true;

This is realized as one instruction!



Synchronization primitives

* Spin-lock
e Busy waiting using TSL/CAS

* Short latency, right for short waiting times

* Semaphore

* Protected counter and a queue of waiting for US

* Atomic operations UP and DOWN

void down () {
if (counter > 0) --counter;
else {
queue .push (myUS) ;
myUS .block () ;

void up () {
if (counter ==

0 && 'queue.empty()) {

US = queue.popany() ;

US .unblock() ;
}

else ++counter;

}



Synchronization primitives

* Mutex

* Implements mutual exclusion (semaphore with counter = 1)
e Atomic operations LOCK and UNLOCK (corresponding to UP and DOWN)

* Barrier
* Multiple units of scheduling meet at the same time on the same barrier

 Specific programming language constructs

* Monitor
* Methods in an object executed with mutual exclusion
* Possibility to wait on a certain condition

e Java/C#

« Keyword synchronized/lock Creates a critical section



Deadlock

L
I\

o

| DEAI

\
)

i
"

e A

.,.‘.

i

VRV

|
A

"RUGH

10

20.5.2024



Deadlock

e Deadlock

* A state of a group of units of scheduling and resources, where every member of the

group waits for an action, which can be performed by other member in the group

* Necessary conditions for deadlock (Coffman)
* Mutual exclusion
* At least one resource in exclusive mode
* Hold and wait
e US holding a resource requests for another one
* No preemption
* Resources cannot be reclaimed without harm
e Circular wait
 Thereis acircle in a deadlock modelling graph

R

T1

T2

R,



Deadlock — example

Shared mutexes

Mutex ml, m2;

Thread 1
ml.lock () ;
m2.lock () ;

m2 .unlock () ;

ml.unlock () ;

20.5.2024

Thread 2
m2.lock () ;
ml.lock () ;

ml.unlock () ;

m2 .unlock () ;

12



Classic synchronization problems

* Classic synchronization problems
* Set of well-known synchronization problems
 Demonstrate a problem using an allegory
* Avoid deadlock, starvation, and other problems

* Bounded-buffer (producer-consumer)
* Dining philosophers

* Readers and writers

* Sleeping barber



/\
Producer-consumer (@\@
 Problem

* Producer produces a product and he places it to the warehouse with a limited
capacity. If the warehouse is full, producer will stop production of products.

* Consumer takes a product from the warehouse. If there is no item available,
consumer will wait for an item.

* If the warehouse is empty and producer produces the first product and there
is a waiting consumer, producer will wake up consumer

* If the warehouse is full and consumer takes the first product and there is
stopped producer, consumer will wake up producer

20.5.2024 14




Dining philosophers ()

* Problem
* N philosophers sitting around a circular table
* Each philosopher has a plate of Chinese food in front of him
* There is one chopstick between each dish, two chopsticks are needed to eat
* The life of a philosopher consists of thinking and eating

0:6;‘

20.5.2024

15



Readers and writers

* Problem
 Common data structure
* Readers are able only to read data
* Writers change data or a data structure
* Many readers may read simultaneously
* Only one writer can change the data at a time
* A reader must wait if there is a working writer
* A writer must wait if there are working readers

* RW Lock

* More difficult to make it fair/efficient

20.5.2024

16




Sleeping barber

* Problem
e Barbershop with one barber, one barber chair, and N
waiting chairs
* When there is no customer, the barber goes to sleep in
the barber chair
e Barber must be woken when a customer comes in

* When the barber is cutting hair, new incoming
customers are waiting in chairs or leaving the shop, if
there is no empty chair




Discussion




	Default Section
	Slide 1: Parallel programming and synchronization
	Slide 2: Parallel and concurrent computing
	Slide 3: Race condition
	Slide 4: Race condition
	Slide 5: Critical section
	Slide 6: Synchronization
	Slide 7: Synchronization primitives
	Slide 8: Synchronization primitives
	Slide 9: Synchronization primitives
	Slide 10: Deadlock
	Slide 11: Deadlock
	Slide 12: Deadlock – example
	Slide 13: Classic synchronization problems
	Slide 14: Producer-consumer
	Slide 15: Dining philosophers
	Slide 16: Readers and writers
	Slide 17: Sleeping barber
	Slide 18: Discussion


