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Parallel and concurrent computing

• Parallel computing
• Calculations or executions of processes are carried out simultaneously
• Bit-level, instruction-level, data, and task parallelism
• Parallelism without concurrency – bit-level parallelism
• The problem is broken into several similar subtasks, results combined

• Concurrent computing
• Multiple computations (processes) are executed simultaneously
• Concurrent without parallelism – multitasking on a single CPU
• Processes do not work on related tasks

• Forces
• One (shared) address space
• Threads
• Multiprocessing
• Scheduling
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Race condition

• Race condition
• Multiple threads accessing 

(updating) the same data in 
shared memory space
• Cache coherency helps a little, but 

does not actually solve anything

• Load-store architecture makes it 
more pronounced

• The result of a computation 
depends on the sequence or 
timing of units of scheduling

class List {

  private:

    Node *root;

  public:

    void PushFront(Node *n) {

      n->next = root;

      root = n;

    }

};
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Race condition

• Shared variable

List lst;

• Thread 1

lst.PushFront(A);

• Thread 2

lst.PushFront(B);
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Critical section

• Problem definition
• Concurrent access to a shared resource can lead to the race condition or even 

to an undefined behavior

• Solution
• Parts of the program, where the shared resource is accessed, need to be 

protected to avoid concurrent access

• Critical section
• Protected section of the program

• Mutual exclusion
• A critical section can be executed simultaneously by at most one unit of 

scheduling
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Synchronization

• Process synchronization
• Multiple units of scheduling do some form of a handshake at a certain point 

to make an agreement to a certain sequence of action

• Data synchronization
• Keeping multiple copies of data in coherence with each other

• Maintain data integrity

• Usually implemented by process synchronization

• Problems with synchronization
• Deadlock, starvation, overhead…
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Synchronization primitives

• Synchronization primitives
• Implement process 

synchronization (in OS)

• Active
• Instructions are executed during 

waiting for an access
• Busy waiting (testing a condition in 

a loop)

• Passive/blocking
• The unit of scheduling is blocked 

until access is allowed

• Hardware support
• Atomic instructions

• Test-and-set (TSL),
compare-and-swap (CAS)

• Instruction semantics:

bool cas(T* var, T old, T newVal)

{

  if (*var != old) return false;

  *var = newVal;

  return true;

}
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Synchronization primitives

• Spin-lock
• Busy waiting using TSL/CAS
• Short latency, right for short waiting times

• Semaphore
• Protected counter and a queue of waiting for US
• Atomic operations UP and DOWN
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void down() {

  if (counter > 0) --counter;

  else {

     queue.push(myUS);

     myUS.block();

  }

} 

void up() {

  if (counter == 0 && !queue.empty()) {

    US = queue.popany();

 US.unblock(); 

  }

  else ++counter;

} 



Synchronization primitives

• Mutex
• Implements mutual exclusion (semaphore with counter = 1)
• Atomic operations LOCK and UNLOCK (corresponding to UP and DOWN)

• Barrier
• Multiple units of scheduling meet at the same time on the same barrier

• Specific programming language constructs
• Monitor

• Methods in an object executed with mutual exclusion
• Possibility to wait on a certain condition

• Java/C#
• Keyword synchronized/lock
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Deadlock
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Deadlock

• Deadlock
• A state of a group of units of scheduling and resources, where every member of the 

group waits for an action, which can be performed by other member in the group

• Necessary conditions for deadlock (Coffman)
• Mutual exclusion

• At least one resource in exclusive mode

• Hold and wait
• US holding a resource requests for another one

• No preemption
• Resources cannot be reclaimed without harm

• Circular wait
• There is a circle in a deadlock modelling graph
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Deadlock – example

Shared mutexes

Mutex m1, m2;

Thread 1

m1.lock();

m2.lock();

m2.unlock();

m1.unlock();

Thread 2

m2.lock();

m1.lock();

m1.unlock();

m2.unlock();

20.5.2024 12



Classic synchronization problems

• Classic synchronization problems
• Set of well-known synchronization problems

• Demonstrate a problem using an allegory

• Avoid deadlock, starvation, and other problems

• Bounded-buffer (producer-consumer)

• Dining philosophers

• Readers and writers

• Sleeping barber
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Producer-consumer

• Problem
• Producer produces a product and he places it to the warehouse with a limited 

capacity. If the warehouse is full, producer will stop production of products.

• Consumer takes a product from the warehouse. If there is no item available, 
consumer will wait for an item.

• If the warehouse is empty and producer produces the first product and there 
is a waiting consumer, producer will wake up consumer

• If the warehouse is full and consumer takes the first product and there is 
stopped producer, consumer will wake up producer
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Dining philosophers

• Problem
• N philosophers sitting around a circular table

• Each philosopher has a plate of Chinese food in front of him

• There is one chopstick between each dish, two chopsticks are needed to eat

• The life of a philosopher consists of thinking and eating
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Readers and writers

• Problem
• Common data structure

• Readers are able only to read data

• Writers change data or a data structure

• Many readers may read simultaneously

• Only one writer can change the data at a time

• A reader must wait if there is a working writer

• A writer must wait if there are working readers

• RW Lock
• More difficult to make it fair/efficient
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Sleeping barber

• Problem
• Barbershop with one barber, one barber chair, and N 

waiting chairs

• When there is no customer, the barber goes to sleep in 
the barber chair

• Barber must be woken when a customer comes in

• When the barber is cutting hair, new incoming 
customers are waiting in chairs or leaving the shop, if 
there is no empty chair
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Discussion

20.5.2024 18


	Default Section
	Slide 1: Parallel programming and synchronization
	Slide 2: Parallel and concurrent computing
	Slide 3: Race condition
	Slide 4: Race condition
	Slide 5: Critical section
	Slide 6: Synchronization
	Slide 7: Synchronization primitives
	Slide 8: Synchronization primitives
	Slide 9: Synchronization primitives
	Slide 10: Deadlock
	Slide 11: Deadlock
	Slide 12: Deadlock – example
	Slide 13: Classic synchronization problems
	Slide 14: Producer-consumer
	Slide 15: Dining philosophers
	Slide 16: Readers and writers
	Slide 17: Sleeping barber
	Slide 18: Discussion


